Worksheet: \log transformations - Solution

Stat 230 - chapter 8 - St. Clair

Let $b>0$ and $x>0$. The logarithm (base- b) of x is denoted $\log _{b}(x)$ and equal to

$$
\log _{b}(x)=a
$$

where a tells us what power we must raise b to to obtain the value x :

$$
b^{a}=x
$$

Easy examples are: $b=2, x=8$ and $a=3$,

$$
\log _{2}(8)=3
$$

since $2^{3}=8$. Or using base $b=10$, then

$$
\log _{10}(0.01)=-2
$$

since $10^{-2}=0.01$.
Some basic facts logarithm facts are

$$
\log _{b}(b)=1
$$

since $b^{1}=b$ and

$$
\log _{b}(1)=0
$$

since $b^{0}=1$.

Interpreting logged variables

Multiplicative changes in x result in additive changes in $\log _{b}(x)$. If $m>0$, then

$$
\log _{b}(m x)=\log _{b}(m)+\log _{b}(x)
$$

For example,

$$
\log _{2}(16)=\log _{2}(2 \times 8)=\log _{2}(2)+\log _{2}(8)=1+3=4
$$

Inverse (i.e. reversing the \log, getting rid of the \log , \ldots)

The logarithm and exponential functions are inverses of one another. This means we can "get rid" of the log by calculating b raised to the logged-function:

$$
b^{\log _{b}(x)}=x
$$

This will be useful in regression when we have a linear relationship between logged-response y and a set of predictors. We need to

For example, suppose we know that

$$
\log _{2}(y)=3+5 x
$$

To return this to an expression on the original (unlogged) scale of y, we need take both sides raised to the base 2:

$$
2^{\log _{2}(y)}=2^{3+5 x}
$$

Simplifying both sides gives

$$
y=2^{3} \times 2^{5 x}
$$

Questions

1. Write the following as the sum of two logarithms. Simplify as much as possible:
a. $\log _{2}(2 x)$
answer:

$$
\log _{2}(2 x)=\log _{2}(2)+\log _{2}(x)=1+\log _{2}(x)
$$

b. $\log _{2}(0.5 x)$
answer:

$$
\log _{2}(0.5 x)=\log _{2}(0.5)+\log _{2}(x)=-1+\log _{2}(x)
$$

c. $\ln (2 x)$ where \ln is the natural \log (base-e)
answer:

$$
\ln (2 x)=\ln (2)+\ln (x) \approx 0.693+\ln (x)
$$

2. Write the following expressions in terms of y, not $\log (y)$. Simplify as much as possible:
a. $\log _{2}(y)=1-3 x$
answer:

$$
y=2^{1-3 x}=2^{1} \times 2^{-3 x}=2 \times\left(2^{-3}\right)^{x}=2 \times\left(\frac{1}{8}\right)^{x}
$$

b. $\log _{10}(y)=-2+0.4 x$
answer:

$$
y=10^{-2+0.4 x}=10^{-2} \times 10^{0.4 x}=0.01 \times\left(10^{0.4}\right)^{x} \approx 0.01 \times 2.512^{x}
$$

c. $\ln (y)=1-3 x$
answer:

$$
y=e^{1-3 x}=e^{1} \times e^{-3 x}=e \times\left(e^{-3}\right)^{x} \approx 2.718 \times 0.050^{x}
$$

3. Write the following expressions in terms of y and x, not $\log (y)$ and $\log (x)$. Simplify as much as possible:
a. $\log _{2}(y)=1-3 \log _{2}(x)$
answer:

$$
y=2^{1-3 \log _{2}(x)}=2^{1} \times 2^{-3 \log _{2}(x)}=2 \times\left(2^{\log _{2}(x)}\right)^{-3}=2 \times x^{-3}
$$

b. $\ln (y)=-2+0.4 \ln (x)$
answer:

$$
y=e^{-2+0.4 \ln (x)}=e^{-2} \times e^{0.4 \ln (x)}=e^{-2} \times\left(e^{\ln (x)}\right)^{0.4} \approx 0.135 \times x^{0.4}
$$

c. $\ln (y)=1-3 \log _{2}(x)$
answer: This example shows that using difference log-bases on x and y make simplification more difficult.

$$
y=e^{1-3 \log _{2}(x)}=e^{1} \times e^{-3 \frac{\ln (x)}{\ln (2)}}=e \times\left[e^{\ln (x)}\right]^{-3 / \ln (2)}=e \times x^{-3 / \ln (2)} \approx e \times x^{-3.322}
$$

Here we use the change of base property: $\log _{2}(x)=\frac{\ln (x)}{\ln (2)}$
4. Logarithmic model: Regression of Y on $\log (x)$ obtains the following estimated mean of Y :

$$
\hat{\mu}(Y \mid x)=1-3 \log _{2}(x)
$$

a. What is the change in estimated mean response if we double the value of x ?
answer: The mean when we double x is
$\hat{\mu}(Y \mid 2 x)=1-3 \log _{2}(2 x)=1-3\left(\log _{2}(2)+\log _{2}(x)\right)=1-3\left(1+\log _{2}(x)\right)=1-3 \log _{2}(x)-3=\hat{\mu}(Y \mid x)-3$
The mean response of Y is lowered by 3 units when we double x.
b. What is the change in estimated mean response if we triple the value of x ?
answer: The mean when we triple x is
$\hat{\mu}(Y \mid 3 x)=1-3 \log _{2}(3 x)=1-3\left(\log _{2}(3)+\log _{2}(x)\right)=1-3 \log _{2}(x)-3 \log _{2}(3) \approx \hat{\mu}(Y \mid x)-4.755$
The mean response of Y is lowered by about 4.755 units when we triple x.
c. What is the change in estimated mean response if we reduce the value of x by 20% ?
answer: The mean when we reduce x by 20%, i.e. multiply it by 0.80 , is
$\hat{\mu}(Y \mid 0.8 x)=1-3 \log _{2}(0.8 x)=1-3\left(\log _{2}(0.8)+\log _{2}(x)\right)=1-3 \log _{2}(x)-3 \log _{2}(0.8) \approx \hat{\mu}(Y \mid x)+0.966$
The mean response of Y is increased by about 0.966 units when we reduce x by 20%.
5. Exponential model: Regression of $\log _{2}(Y)$ on x obtains the following estimated median of Y :

$$
\hat{\operatorname{me} d}\left(\log _{2}(Y) \mid x\right)=-2+0.4 x
$$

a. Write the median in terms of Y instead of $\log _{2}(Y)$. Simplify as much as possible.
answer: Since the median of the logged-Y's equals the \log of the median of Y, we simplify like we did in question 2.

$$
\hat{\operatorname{med}}(Y \mid x)=2^{\log _{2}(\hat{\operatorname{med}}(Y \mid x))}=2^{-2+0.4 x}=2^{-2} \times 2^{0.4 x}=0.25 \times 2^{0.4 x}
$$

b. What is the multiplicative change in estimated median response if we increase x by 1 unit?
answer: The median when we add 1 to x is
$\hat{\operatorname{med}}(Y \mid x+1)=0.25 \times 2^{0.4(x+1)}=0.25 \times 2^{0.4 x+0.4}=0.25 \times 2^{0.4 x} \times 2^{0.4}=\hat{\operatorname{me}} d(Y \mid x) \times 2^{0.4} \approx \hat{m e d}(Y \mid x) \times 1.320$
A one unit increase in x results in a 1.32-fold increase in the median of Y.
c. What is the percent change in estimated median response if we increase x by 1 unit?
answer: A multiplicative increase of 1.32 is the same as a 32% increase in the median of Y.
$100 \% \times \frac{\hat{\operatorname{med}}(Y \mid x+1)-\hat{\operatorname{med}}(Y \mid x)}{\hat{\operatorname{med}}(Y \mid x)}=100 \% \times \frac{\hat{\operatorname{med}}(Y \mid x) \times 1.320-\hat{\operatorname{med}}(Y \mid x)}{\hat{\operatorname{med}}(Y \mid x)}=100 \%(1.32-1)=32 \%$
d. What is the multiplicative change in estimated median response if we decrease x by 2 units?
answer: The median when we subtract 2 from x is
$\hat{\operatorname{med}}(Y \mid x-2)=0.25 \times 2^{0.4(x-2)}=0.25 \times 2^{0.4 x} \times 2^{-2(0.4)}=\hat{\operatorname{med}}(Y \mid x) \times 2^{-2(0.4)} \approx \hat{\operatorname{med}}(Y \mid x) \times 0.574$
A two unit decrease in x results in a multiplicative decrease of 0.574 in the median of Y.
e. What is the percent change in estimated median response if we decrease x by 2 units?
answer: A multiplicative decrease of 0.574 is the same as a 42.6% decrease in the median of Y.
$100 \% \times \frac{\hat{\operatorname{med}}(Y \mid x-2)-\hat{\operatorname{med}}(Y \mid x)}{\hat{\operatorname{med}}(Y \mid x)}=100 \% \times \frac{\hat{\operatorname{med}}(Y \mid x) \times 0.574-\hat{\operatorname{med}}(Y \mid x)}{\hat{\operatorname{med}}(Y \mid x)}=100 \%(0.574-1)=-42.6 \%$
6. Power model: Regression of $\log _{2}(Y)$ on $\log _{2}(x)$ obtains the following estimated median of Y :

$$
\operatorname{me\hat {d}ian}\left(\log _{2}(Y) \mid x\right)=1-3 \log _{2}(x)
$$

a. Write the median in terms of Y and x instead of logs. Simplify as much as possible.
answer: Since the median of the logged-Y's equals the log of the median of Y, we simplify like we did in questions 3 and 5.

$$
\hat{\operatorname{med}}(Y \mid x)=2^{1-3 \log _{2}(x)}=2^{1} \times\left(2^{\log _{2}(x)}\right)^{-3}=2 \times x^{-3}
$$

b. What is the multiplicative change in estimated median response if we increase x by 50% ?
answer: The median of Y when multiple x by 1.5 (50% increase) is:

$$
\hat{\operatorname{med}}(Y \mid 1.5 x)=2 \times(1.5 x)^{-3}=2 \times x^{-3} \times 1.5^{-3}=\hat{\operatorname{me}} d(Y \mid x) \times 1.5^{-3} \approx \hat{\operatorname{med}}(Y \mid x) \times 0.296
$$

Increasing x by 50% results in a 0.296 -fold decrease in the median of Y.
c. What is the percent change in estimated median response if we increase x by 50% ?
answer: Increasing x by 50% results in a 70.4% decrease in the median of Y

$$
100 \%(0.296-1)=-70.4 \%
$$

d. What is the multiplicative change in estimated median response if we reduce the value of x by 20% ?
answer: The median of Y when multiple x by 0.8 (20% decrease) is:

$$
\hat{\operatorname{med}}(Y \mid 0.8 x)=2 \times(0.8 x)^{-3}=2 \times x^{-3} \times 0.8^{-3}=\hat{\operatorname{med}}(Y \mid x) \times 0.8^{-3} \approx \hat{\operatorname{med}}(Y \mid x) \times 1.953
$$

Decreasing x by 20% results in a 1.953 -fold increase in the median of Y.
e. What is the percent change in estimated median response if we reduce the value of x by 20% ?
answer: Decreasing x by 20% results in a 95.3% increase in the median of Y

$$
100 \%(1.953-1)=95.3 \%
$$

