Worksheet: log transformations - Solution

Stat 230 - chapter 8 - St. Clair

Let b > 0 and x > 0. The logarithm (base-b) of x is denoted $\log_b(x)$ and equal to

 $\log_b(x) = a$ where a tells us what power we must raise b to to obtain the value x: $b^a = x$ Easy examples are: b = 2, x = 8 and a = 3, $\log_2(8) = 3$ since $2^3 = 8$. Or using base b = 10, then $\log_{10}(0.01) = -2$ since $10^{-2} = 0.01$. Some basic facts logarithm facts are $\log_b(b) = 1$ since $b^1 = b$ and $\log_b(1) = 0$ since $b^0 = 1$.

Interpreting logged variables

Multiplicative changes in x result in additive changes in $\log_b(x)$. If m > 0, then

$$\log_b(mx) = \log_b(m) + \log_b(x)$$

For example,

 $\log_2(16) = \log_2(2 \times 8) = \log_2(2) + \log_2(8) = 1 + 3 = 4$

Inverse (i.e. reversing the log, getting rid of the log, \dots)

The logarithm and exponential functions are inverses of one another. This means we can "get rid" of the log by calculating b raised to the logged-function:

$$b^{\log_b(x)} = x$$

This will be useful in regression when we have a linear relationship between logged-response y and a set of predictors. We need to

For example, suppose we know that

$$\log_2(y) = 3 + 5x$$

To return this to an expression on the original (unlogged) scale of y, we need take both sides raised to the base 2:

$$2^{\log_2(y)} = 2^{3+5x}$$

Simplifying both sides gives

$$y = 2^3 \times 2^{5x}$$

Questions

1. Write the following as the sum of two logarithms. Simplify as much as possible:

a. $\log_2(2x)$

answer:

$$\log_2(2x) = \log_2(2) + \log_2(x) = 1 + \log_2(x)$$

b. $\log_2(0.5x)$

answer:

$$\log_2(0.5x) = \log_2(0.5) + \log_2(x) = -1 + \log_2(x)$$

c. $\ln(2x)$ where ln is the natural log (base-e)

answer:

$$\ln(2x) = \ln(2) + \ln(x) \approx 0.693 + \ln(x)$$

2. Write the following expressions in terms of y, not $\log(y)$. Simplify as much as possible:

a. $\log_2(y) = 1 - 3x$

answer:

$$y = 2^{1-3x} = 2^1 \times 2^{-3x} = 2 \times (2^{-3})^x = 2 \times (\frac{1}{8})^x$$

b. $\log_{10}(y) = -2 + 0.4x$

answer:

$$y = 10^{-2+0.4x} = 10^{-2} \times 10^{0.4x} = 0.01 \times (10^{0.4})^x \approx 0.01 \times 2.512^x$$

c. $\ln(y) = 1 - 3x$

answer:

$$y = e^{1-3x} = e^1 \times e^{-3x} = e \times (e^{-3})^x \approx 2.718 \times 0.050^x$$

3. Write the following expressions in terms of y and x, not $\log(y)$ and $\log(x)$. Simplify as much as possible:

a. $\log_2(y) = 1 - 3\log_2(x)$

answer:

$$y = 2^{1-3\log_2(x)} = 2^1 \times 2^{-3\log_2(x)} = 2 \times \left(2^{\log_2(x)}\right)^{-3} = 2 \times x^{-3}$$

b. $\ln(y) = -2 + 0.4 \ln(x)$

answer:

$$y = e^{-2+0.4\ln(x)} = e^{-2} \times e^{0.4\ln(x)} = e^{-2} \times \left(e^{\ln(x)}\right)^{0.4} \approx 0.135 \times x^{0.4}$$

c. $\ln(y) = 1 - 3\log_2(x)$

answer: This example shows that using difference log-bases on **x** and **y** make simplification more difficult.

$$y = e^{1-3\log_2(x)} = e^1 \times e^{-3\frac{\ln(x)}{\ln(2)}} = e \times \left[e^{\ln(x)}\right]^{-3/\ln(2)} = e \times x^{-3/\ln(2)} \approx e \times x^{-3.322}$$

Here we use the change of base property: $\log_2(x) = \frac{\ln(x)}{\ln(2)}$

4. Logarithmic model: Regression of Y on log(x) obtains the following estimated mean of Y:

$$\hat{\mu}(Y \mid x) = 1 - 3\log_2(x)$$

a. What is the change in estimated mean response if we double the value of x?

answer: The mean when we double x is

$$\hat{\mu}(Y \mid 2x) = 1 - 3\log_2(2x) = 1 - 3(\log_2(2) + \log_2(x)) = 1 - 3(1 + \log_2(x)) = 1 - 3\log_2(x) - 3 = \hat{\mu}(Y \mid x) - 3$$

The mean response of Y is lowered by 3 units when we double x.

b. What is the change in estimated mean response if we triple the value of x? answer: The mean when we triple x is

$$\hat{\mu}(Y \mid 3x) = 1 - 3\log_2(3x) = 1 - 3(\log_2(3) + \log_2(x)) = 1 - 3\log_2(x) - 3\log_2(3) \approx \hat{\mu}(Y \mid x) - 4.755$$

The mean response of Y is lowered by about 4.755 units when we triple x.

c. What is the change in estimated mean response if we reduce the value of x by 20%?

answer: The mean when we reduce x by 20%, i.e. multiply it by 0.80, is

$$\hat{\mu}(Y \mid 0.8x) = 1 - 3\log_2(0.8x) = 1 - 3(\log_2(0.8) + \log_2(x)) = 1 - 3\log_2(x) - 3\log_2(0.8) \approx \hat{\mu}(Y \mid x) + 0.966$$

The mean response of Y is increased by about 0.966 units when we reduce x by 20%.

5. Exponential model: Regression of $\log_2(Y)$ on x obtains the following estimated median of Y:

$$med(\log_2(Y) \mid x) = -2 + 0.4x$$

a. Write the median in terms of Y instead of $\log_2(Y)$. Simplify as much as possible.

answer: Since the median of the logged-Y's equals the log of the median of Y, we simplify like we did in question 2.

$$\hat{med}(Y \mid x) = 2^{\log_2(\hat{med}(Y \mid x))} = 2^{-2+0.4x} = 2^{-2} \times 2^{0.4x} = 0.25 \times 2^{0.4x}$$

b. What is the multiplicative change in estimated median response if we increase x by 1 unit? answer: The median when we add 1 to x is

$$\hat{med}(Y \mid x+1) = 0.25 \times 2^{0.4(x+1)} = 0.25 \times 2^{0.4x+0.4} = 0.25 \times 2^{0.4x} \times 2^{0.4} = \hat{med}(Y \mid x) \times 2^{0.4} \approx \hat{med}(Y \mid x) \times 1.320 \times 2^{0.4(x+1)} = 0.25 \times 2^{0.4(x+1)}$$

A one unit increase in x results in a 1.32-fold increase in the median of Y.

c. What is the percent change in estimated median response if we increase x by 1 unit? answer: A multiplicative increase of 1.32 is the same as a 32% increase in the median of Y.

$$100\% \times \frac{\hat{med}(Y \mid x + 1) - \hat{med}(Y \mid x)}{\hat{med}(Y \mid x)} = 100\% \times \frac{\hat{med}(Y \mid x) \times 1.320 - \hat{med}(Y \mid x)}{\hat{med}(Y \mid x)} = 100\%(1.32 - 1) = 32\%$$

d. What is the multiplicative change in estimated median response if we decrease x by 2 units? answer: The median when we subtract 2 from x is

$$\hat{med}(Y \mid x-2) = 0.25 \times 2^{0.4(x-2)} = 0.25 \times 2^{0.4x} \times 2^{-2(0.4)} = \hat{med}(Y \mid x) \times 2^{-2(0.4)} \approx \hat{med}(Y \mid x) \times 0.574$$

A two unit decrease in x results in a multiplicative decrease of 0.574 in the median of Y.

e. What is the percent change in estimated median response if we decrease x by 2 units?

answer: A multiplicative decrease of 0.574 is the same as a 42.6% decrease in the median of Y.

6. Power model: Regression of $\log_2(Y)$ on $\log_2(x)$ obtains the following estimated median of Y:

$$me\hat{d}ian(\log_2(Y) \mid x) = 1 - 3\log_2(x)$$

a. Write the median in terms of Y and x instead of logs. Simplify as much as possible.

answer: Since the median of the logged-Y's equals the log of the median of Y, we simplify like we did in questions 3 and 5.

$$\hat{med}(Y \mid x) = 2^{1-3\log_2(x)} = 2^1 \times (2^{\log_2(x)})^{-3} = 2 \times x^{-3}$$

b. What is the multiplicative change in estimated median response if we increase x by 50%?

answer: The median of Y when multiple x by 1.5 (50% increase) is:

$$\hat{med}(Y \mid 1.5x) = 2 \times (1.5x)^{-3} = 2 \times x^{-3} \times 1.5^{-3} = \hat{med}(Y \mid x) \times 1.5^{-3} \approx \hat{med}(Y \mid x) \times 0.296$$

Increasing x by 50% results in a 0.296-fold decrease in the median of Y.

c. What is the percent change in estimated median response if we increase x by 50%?

answer: Increasing x by 50% results in a 70.4% decrease in the median of Y

$$100\%(0.296 - 1) = -70.4\%$$

d. What is the multiplicative change in estimated median response if we reduce the value of x by 20%?

answer: The median of Y when multiple x by 0.8 (20% decrease) is:

$$\hat{med}(Y \mid 0.8x) = 2 \times (0.8x)^{-3} = 2 \times x^{-3} \times 0.8^{-3} = \hat{med}(Y \mid x) \times 0.8^{-3} \approx \hat{med}(Y \mid x) \times 1.953$$

Decreasing x by 20% results in a 1.953-fold increase in the median of Y.

e. What is the percent change in estimated median response if we reduce the value of x by 20%? answer: Decreasing x by 20% results in a 95.3% increase in the median of Y

$$100\%(1.953 - 1) = 95.3\%$$